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Summary
I Task: Joint dependency parsing and sentence boundary detection (SBD)

I SBD is trivial for copy-edited text, but challenging for non-standard orthography
(e.g., speech, web content)

I Poor SBD propagates to the parser and deteriorates parsing performance
I Hypothesis: Syntax can be helpful for finding sentence boundaries

That is, a joint system could improve SBD (and possibly parsing)

I System: Transition-based parser with sentence boundary transition
I Beam search for approximate search
I Operates on documents rather than sentences. Often orders of magnitude more tokens –

potential complexity issue
I Standard training methods for inexact search (early update and max-violation) yield bad

models when training on documents

I Conclusion
I DLaSO outperforms early update and max violation when training on documents
I Syntax helps to disambiguate sentence boundaries

Task
Predict sentence boundaries and syntactic structure jointly

you said you have four cats i have four cats how old are they . . .

nsubj nsubj
ccomp

num
dobj

nsubj num
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advmod dep nsubj

Figure: Sample document from the Switchboard corpus. Sentence starts are underlined

Transition System
I ArcStandard system with Swap [Nivre 2009]

I Additional transition Sb marks new sentences
I State augmented to hold sentence-initial tokens

Transition Preconditions
LeftArc (σ|s1|s0, β,A, S) ⇒ (σ|s0, β,A ∪ {s0 → s1}, S) s1 6= 0
RightArc (σ|s1|s0, β,A, S) ⇒ (σ|s1, β,A ∪ {s1 → s0}, S)
Shift (σ, b0|β,A, S) ⇒ (σ|b0, β,A, S) b0 6= Last(S) ∨ |σ| = 1 ∨ Swapped(β)
Swap (σ|s1|s0, β,A, S) ⇒ (σ|s0, s1|β,A, S) s1 < s0

Sb (σ, b0|β,A, S) ⇒ (σ, b0|β,A, S ∪ {b0}) Last(S) < b0 ∧ ¬Swapped(β)

Figure: Transition system

Training
I Greedy – plain greedy perceptron, uses all training data
I Structured perceptron with beam search

I Early update – not necessarily using all training data [Collins and Roark 2004]
I Max-violation – not necessarily using all training data [Huang et al. 2012]
I DLaSO – uses all training data [Björkelund and Kuhn 2014]

Early Update Max Violation

Re-seed beam DLaSo

Figure: Difference between training methods for beam search

Performance of update methods

(a) Sentence boundary detection (b) Parsing

Figure: Performance of different update strategies on the Switchboard development set.

Why Early and Max-violation Don’t Work
I Early and max-violation do not use all training data

when training instances are full documents

(a) Training on sentences (b) Training on documents

Figure: Average length of training sequences used for training for early update and max-violation

Increasing beam size does not help

Figure: SBD F1 when varying beam size

I Minimal improvements for
max-violation

I Still worse than DLaSO

Final Results
Sentence boundaries

I WSJ: All roughly equal
I Switchboard: Low syntactic complexity, no

improvement with Joint
I WSJ∗: High gains from syntax (Joint)

WSJ Switchboard WSJ∗

MarMoT 97.64 71.87 53.02
NoSyntax 98.21 76.31† 55.15

Joint 98.21 76.65† 65.34†‡

†: significant improvement over MarMoT
‡: significant improvement over NoSyntax

Table: Test set SBD results (F1)

Parsing

I WSJ: All roughly equal
I Switchboard: Slight improvements

over baselines
I WSJ∗: Big advantage for Joint

WSJ Switchboard WSJ∗

Gold 90.22 84.99 88.71

MarMoT 89.81 78.93 83.37
NoSyntax 89.95 80.30† 83.61

Joint 89.71 79.97† 85.66†‡

Joint-Reparsed 89.93 80.61†‡∗ 85.38†‡

†: significant improvement over MarMoT
‡: significant improvement over NoSyntax
∗: significant improvement over Joint

Table: Test set parsing results (LAS)
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Figure: Overview of parsing pipelines

Experimental Setup
I Data

I WSJ: Wall Street Journal, copy-edited (standard)
I Switchboard: Spoken transcripts (lowercased, no punct)
I WSJ∗: WSJ similar to Switchboard (lowercased, no punct)

I Evaluation
I Sentences: F-measure on sentence-initial tokens
I Parsing: Labeled Attachment Score (LAS)

I Sentence Boundary Baselines
I OpenNLP – requires punctuation http://opennlp.apache.org
I CoreNLP – requires punctuation [Manning et al. 2014]
I MarMoT – sequence tagger, does not require punctuation [Müller et al. 2013]
I NoSyntax – (joint) parser, but with trivial parse trees

Baseline SBD performance

I OpenNLP and CoreNLP can’t
be applied on Switchboard and WSJ∗

due to lack of punctuation
I All systems roughly equal on WSJ
I MarMot and NoSyntax are

reasonable baselines

WSJ Switchboard WSJ∗

OpenNLP 98.09 – –
CoreNLP 98.60 – –
MarMoT 98.21 71.78 52.82
NoSyntax 99.11 74.98 52.83

Table: Dev set results (F1) for baselines
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